home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS)))) DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLASDA - a divide and conquer approach, DLASDA computes the singular
- value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with
- diagonal D and offdiagonal E, where M = N + SQRE
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, DIFL,
- DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM,
- C, S, WORK, IWORK, INFO )
-
- INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
-
- INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), K( * ),
- PERM( LDGCOL, * )
-
- DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, *
- ), E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
- U( LDU, * ), VT( LDU, * ), WORK( * ), Z( LDU, * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- Using a divide and conquer approach, DLASDA computes the singular value
- decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with
- diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes
- the singular values in the SVD B = U * S * VT. The orthogonal matrices U
- and VT are optionally computed in compact form.
-
- A related subroutine, DLASD0, computes the singular values and the
- singular vectors in explicit form.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- ICOMPQ (input) INTEGER Specifies whether singular vectors are to be
- computed in compact form, as follows = 0: Compute singular values only.
- = 1: Compute singular vectors of upper bidiagonal matrix in compact form.
-
- SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom
- of the computation tree.
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS)))) DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS))))
-
-
-
- N (input) INTEGER
- The row dimension of the upper bidiagonal matrix. This is also the
- dimension of the main diagonal array D.
-
- SQRE (input) INTEGER
- Specifies the column dimension of the bidiagonal matrix. = 0: The
- bidiagonal matrix has column dimension M = N;
- = 1: The bidiagonal matrix has column dimension M = N + 1.
-
- D (input/output) DOUBLE PRECISION array, dimension ( N )
- On entry D contains the main diagonal of the bidiagonal matrix. On
- exit D, if INFO = 0, contains its singular values.
-
- E (input) DOUBLE PRECISION array, dimension ( M-1 )
- Contains the subdiagonal entries of the bidiagonal matrix. On
- exit, E has been destroyed.
-
- U (output) DOUBLE PRECISION array,
- dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced if
- ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left singular
- vector matrices of all subproblems at the bottom level.
-
- LDU (input) INTEGER, LDU = > N.
- The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM,
- and Z.
-
- VT (output) DOUBLE PRECISION array,
- dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced if
- ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
- singular vector matrices of all subproblems at the bottom level.
-
- K (output) INTEGER array,
- dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. If
- ICOMPQ = 1, on exit, K(I) is the dimension of the I-th secular
- equation on the computation tree.
-
- DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
- where NLVL = floor(log_2 (N/SMLSIZ))).
-
- DIFR (output) DOUBLE PRECISION array,
- dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and dimension ( N ) if
- ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2
- * I - 1) record distances between singular values on the I-th
- level and singular values on the (I -1)-th level, and DIFR(1:N, 2
- * I ) contains the normalizing factors for the right singular
- vector matrix. See DLASD8 for details.
-
- Z (output) DOUBLE PRECISION array,
- dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension ( N ) if
- ICOMPQ = 0. The first K elements of Z(1, I) contain the
- components of the deflation-adjusted updating row vector for
- subproblems on the I-th level.
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS)))) DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS))))
-
-
-
- POLES (output) DOUBLE PRECISION array,
- dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if
- ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and POLES(1,
- 2*I) contain the new and old singular values involved in the
- secular equations on the I-th level.
-
- GIVPTR (output) INTEGER array, dimension ( N ) if ICOMPQ = 1, and
- not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I )
- records the number of Givens rotations performed on the I-th
- problem on the computation tree.
-
- GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 * NLVL ) if
- ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on
- exit, for each I, GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record
- the locations of Givens rotations performed on the I-th level on
- the computation tree.
-
- LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of
- arrays GIVCOL and PERM.
-
- PERM (output) INTEGER array,
- dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced if
- ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
- permutations done on the I-th level of the computation tree.
-
- GIVNUM (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL
- ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1,
- on exit, for each I, GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I)
- record the C- and S- values of Givens rotations performed on the
- I-th level on the computation tree.
-
- C (output) DOUBLE PRECISION array,
- dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If
- ICOMPQ = 1 and the I-th subproblem is not square, on exit, C( I )
- contains the C-value of a Givens rotation related to the right
- null space of the I-th subproblem.
-
- S (output) DOUBLE PRECISION array, dimension ( N ) if
- ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the
- I-th subproblem is not square, on exit, S( I ) contains the S-
- value of a Givens rotation related to the right null space of the
- I-th subproblem.
-
- WORK (workspace) DOUBLE PRECISION array, dimension
- (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
-
- IWORK (workspace) INTEGER array.
- Dimension must be at least (7 * N).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS)))) DDDDLLLLAAAASSSSDDDDAAAA((((3333SSSS))))
-
-
-
- > 0: if INFO = 1, an singular value did not converge
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 4444
-
-
-
-